#1 Le 28/10/2021, à 09:01
- pettan14
Freebox: fichier impossible d'accéder au fichier "erreur inconnue 524"
Bonjour, depuis hier, je ne peux plus accéder à mes fichiers sur les disques de ma Freebox Révolution.
1- Mon Fstab est toujours là, je n'ai rien changé dessus;
2- quand je tape:
ls /media/Freebox
j'ai en retour:
ls: impossible d'accéder à '/media/Freebox': Erreur inconnue 524
3- quand je tape:
sudo mkdir /media/Freebox
j'ai en retour:
mkdir: impossible de créer le répertoire «/media/Freebox»: Le fichier existe
Que faire?
PC: CM MSI Z390-A Pro - Intel Core i5-8400 CPU 2.80gHz x 6 - Intel UHD Graphics 630 (Coffeelake 3x8 GT2) - 2 x DDR4 8Go 2400MHz CL17 Crucial SR - SSD 125.5 Go
Ubuntu 22.10
Débutant....
Hors ligne
#2 Le 02/11/2021, à 20:36
- Junkaria
Re : Freebox: fichier impossible d'accéder au fichier "erreur inconnue 524"
Que retourne la commande lsblk
Et si tu montes manuellement ton volume avec mount <volume>?
Ubuntu 08.04-11.04 | Linux Mint | ArchLinux
Hors ligne
#3 Le 04/11/2021, à 08:52
- pettan14
Re : Freebox: fichier impossible d'accéder au fichier "erreur inconnue 524"
Bonjour Junkaria, merci de te pencher sur mon problème.
Petite précision, quand j'allume mon pc, le montage se fait correctement, puisque je peux accéder à mes fichiers normalement, mais au bout d'un certain temps plus ou moins long, le message s'affiche et je ne peux plus les consulter.
Alors voici le retour demandé:
Le premier quand je peux y accéder:
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 185,3M 1 loop /snap/audacity/922
loop1 7:1 0 4K 1 loop /snap/bare/5
loop2 7:2 0 10,1M 1 loop /snap/canonical-livepatch/114
loop3 7:3 0 99,4M 1 loop /snap/core/11993
loop4 7:4 0 55,5M 1 loop /snap/core18/2246
loop5 7:5 0 55,5M 1 loop /snap/core18/1988
loop6 7:6 0 276,7M 1 loop /snap/gimp/372
loop7 7:7 0 219M 1 loop /snap/gnome-3-34-1804/66
loop8 7:8 0 219M 1 loop /snap/gnome-3-34-1804/72
loop9 7:9 0 1,1M 1 loop /snap/gnome-clocks/433
loop10 7:10 0 32,5M 1 loop /snap/snapd/13640
loop11 7:11 0 164,8M 1 loop /snap/gnome-3-28-1804/161
loop12 7:12 0 31,1M 1 loop /snap/snapd/11036
loop13 7:13 0 51M 1 loop /snap/snap-store/518
loop14 7:14 0 176,9M 1 loop /snap/krita/64
loop15 7:15 0 64,8M 1 loop /snap/gtk-common-themes/1514
loop16 7:16 0 295,7M 1 loop /snap/vlc/2344
loop17 7:17 0 176M 1 loop /snap/musescore/216
loop18 7:18 0 195,6M 1 loop /snap/picard/760
loop19 7:19 0 51M 1 loop /snap/snap-store/547
loop20 7:20 0 140K 1 loop /snap/gtk2-common-themes/13
loop21 7:21 0 61,9M 1 loop /snap/core20/1169
loop22 7:22 0 183,9M 1 loop /snap/inkscape/9256
loop23 7:23 0 242,4M 1 loop /snap/gnome-3-38-2004/76
loop24 7:24 0 65,2M 1 loop /snap/gtk-common-themes/1519
loop25 7:25 0 260,7M 1 loop /snap/kde-frameworks-5-core18/32
loop26 7:26 0 1,6G 1 loop /snap/0ad/242
sda 8:0 0 465,8G 0 disk
├─sda1 8:1 0 512M 0 part /boot/efi
├─sda2 8:2 0 1K 0 part
└─sda5 8:5 0 465,3G 0 part /
sr0 11:0 1 1024M 0 rom
sr1 11:1 1 1024M 0 rom
Le deuxième quand je ne peux plus y accéder:
lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 1,6G 1 loop /snap/0ad/242
loop1 7:1 0 4K 1 loop /snap/bare/5
loop2 7:2 0 10,1M 1 loop /snap/canonical-livepatch/114
loop3 7:3 0 99,4M 1 loop /snap/core/11993
loop4 7:4 0 276,7M 1 loop /snap/gimp/372
loop5 7:5 0 164,8M 1 loop /snap/gnome-3-28-1804/161
loop6 7:6 0 219M 1 loop /snap/gnome-3-34-1804/66
loop7 7:7 0 242,4M 1 loop /snap/gnome-3-38-2004/76
loop8 7:8 0 55,5M 1 loop /snap/core18/2246
loop9 7:9 0 1,1M 1 loop /snap/gnome-clocks/433
loop10 7:10 0 51M 1 loop /snap/snap-store/518
loop11 7:11 0 219M 1 loop /snap/gnome-3-34-1804/72
loop12 7:12 0 31,1M 1 loop /snap/snapd/11036
loop13 7:13 0 65,2M 1 loop /snap/gtk-common-themes/1519
loop14 7:14 0 260,7M 1 loop /snap/kde-frameworks-5-core18/32
loop15 7:15 0 32,5M 1 loop /snap/snapd/13640
loop16 7:16 0 185,3M 1 loop /snap/audacity/922
loop17 7:17 0 55,5M 1 loop /snap/core18/1988
loop18 7:18 0 61,9M 1 loop /snap/core20/1169
loop19 7:19 0 295,7M 1 loop /snap/vlc/2344
loop20 7:20 0 176,9M 1 loop /snap/krita/64
loop21 7:21 0 183,9M 1 loop /snap/inkscape/9256
loop22 7:22 0 176M 1 loop /snap/musescore/216
loop23 7:23 0 140K 1 loop /snap/gtk2-common-themes/13
loop24 7:24 0 195,6M 1 loop /snap/picard/760
loop25 7:25 0 51M 1 loop /snap/snap-store/547
loop26 7:26 0 64,8M 1 loop /snap/gtk-common-themes/1514
sda 8:0 0 465,8G 0 disk
├─sda1 8:1 0 512M 0 part /boot/efi
├─sda2 8:2 0 1K 0 part
└─sda5 8:5 0 465,3G 0 part /
sr0 11:0 1 1024M 0 rom
sr1 11:1 1 1024M 0 rom
Je ne sais pas si ça peut aider.
Je ne sais pas trop quoi mettre à la place de volume dans sudo mount <volume> ...
Merci encore!
Dernière modification par pettan14 (Le 04/11/2021, à 10:01)
PC: CM MSI Z390-A Pro - Intel Core i5-8400 CPU 2.80gHz x 6 - Intel UHD Graphics 630 (Coffeelake 3x8 GT2) - 2 x DDR4 8Go 2400MHz CL17 Crucial SR - SSD 125.5 Go
Ubuntu 22.10
Débutant....
Hors ligne
#4 Le 04/11/2021, à 11:55
- geole
Re : Freebox: fichier impossible d'accéder au fichier "erreur inconnue 524"
Bonjour
On va regarder les erreurs qui sont mémorisées.
Lorsque tu auras le problème, donne le retour de cette commande
journalctl --no-pager -b -p err
ainsi que le contenu du fichier fstab
grep -E -v '^(#)' /etc/fstab
Dernière modification par geole (Le 04/11/2021, à 12:00)
Les grilles de l'installateur https://doc.ubuntu-fr.org/tutoriel/inst … _subiquity
"gedit admin:///etc/fstab" est proscrit, utilisez "pkexec env DISPLAY=$DISPLAY XAUTHORITY=$XAUTHORITY xdg-open /etc/fstab" Voir https://doc.ubuntu-fr.org/gedit
Les partitions EXT4 des disques externes => https://forum.ubuntu-fr.org/viewtopic.p … #p22697248
En ligne
#5 Le 04/11/2021, à 14:40
- pettan14
Re : Freebox: fichier impossible d'accéder au fichier "erreur inconnue 524"
Bonjour geole,
Merci beaucoup!
Alors voilà le retour de la 1e commande:
journalctl --no-pager -b -p err
-- Logs begin at Fri 2021-10-29 16:52:56 CEST, end at Thu 2021-11-04 14:32:36 CET. --
nov. 04 09:15:24 ebvpc-MS-7B98 kernel: x86/cpu: SGX disabled by BIOS
nov. 04 09:15:24 ebvpc-MS-7B98 kernel: ACPI BIOS Error (bug): Could not resolve symbol [\_SB.UBTC.RUCC], AE_NOT_FOUND (20201113/psargs-330)
nov. 04 09:15:24 ebvpc-MS-7B98 kernel: ACPI Error: Aborting method \_SB.PCI0.XHC.RHUB.HS04._PLD due to previous error (AE_NOT_FOUND) (20201113/psparse-529)
nov. 04 09:15:24 ebvpc-MS-7B98 kernel: ACPI BIOS Error (bug): Could not resolve symbol [\_SB.UBTC.RUCC], AE_NOT_FOUND (20201113/psargs-330)
nov. 04 09:15:24 ebvpc-MS-7B98 kernel: ACPI Error: Aborting method \_SB.PCI0.XHC.RHUB.SS04._PLD due to previous error (AE_NOT_FOUND) (20201113/psparse-529)
nov. 04 09:15:24 ebvpc-MS-7B98 systemd-udevd[367]: event3: Failed to call EVIOCSKEYCODE with scan code 0xc022d, and key code 103: Invalid argument
nov. 04 09:15:24 ebvpc-MS-7B98 systemd-udevd[367]: event3: Failed to call EVIOCSKEYCODE with scan code 0xc022e, and key code 108: Invalid argument
nov. 04 09:15:29 ebvpc-MS-7B98 bluetoothd[989]: Failed to set mode: Blocked through rfkill (0x12)
nov. 04 09:15:35 ebvpc-MS-7B98 kernel: FS-Cache: Duplicate cookie detected
nov. 04 09:15:35 ebvpc-MS-7B98 kernel: FS-Cache: O-cookie c=0000000081621c1f [p=00000000f55ba310 fl=222 nc=0 na=1]
nov. 04 09:15:35 ebvpc-MS-7B98 kernel: FS-Cache: O-cookie d=00000000cf0b2bb7 n=00000000ec70598f
nov. 04 09:15:35 ebvpc-MS-7B98 kernel: FS-Cache: O-key=[20] '0a0001bdfd0f00ee00b000000000000000000001'
nov. 04 09:15:35 ebvpc-MS-7B98 kernel: FS-Cache: N-cookie c=00000000f9dff6e3 [p=00000000f55ba310 fl=2 nc=0 na=1]
nov. 04 09:15:35 ebvpc-MS-7B98 kernel: FS-Cache: N-cookie d=00000000cf0b2bb7 n=0000000017fd2d62
nov. 04 09:15:35 ebvpc-MS-7B98 kernel: FS-Cache: N-key=[20] '0a0001bdfd0f00ee00b000000000000000000001'
nov. 04 09:15:35 ebvpc-MS-7B98 kernel: FS-Cache: Duplicate cookie detected
nov. 04 09:15:35 ebvpc-MS-7B98 kernel: FS-Cache: O-cookie c=0000000081621c1f [p=00000000f55ba310 fl=222 nc=0 na=1]
nov. 04 09:15:35 ebvpc-MS-7B98 kernel: FS-Cache: O-cookie d=00000000cf0b2bb7 n=00000000ec70598f
nov. 04 09:15:35 ebvpc-MS-7B98 kernel: FS-Cache: O-key=[20] '0a0001bdfd0f00ee00b000000000000000000001'
nov. 04 09:15:35 ebvpc-MS-7B98 kernel: FS-Cache: N-cookie c=00000000d23f9c2a [p=00000000f55ba310 fl=2 nc=0 na=1]
nov. 04 09:15:35 ebvpc-MS-7B98 kernel: FS-Cache: N-cookie d=00000000cf0b2bb7 n=000000007135a499
nov. 04 09:15:35 ebvpc-MS-7B98 kernel: FS-Cache: N-key=[20] '0a0001bdfd0f00ee00b000000000000000000001'
nov. 04 09:15:37 ebvpc-MS-7B98 bluetoothd[989]: Failed to set mode: Blocked through rfkill (0x12)
nov. 04 09:15:42 ebvpc-MS-7B98 gdm-password][1756]: gkr-pam: unable to locate daemon control file
nov. 04 09:15:57 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:16:00 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:16:07 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:16:07 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:16:18 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:16:18 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:16:28 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:16:28 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:16:43 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:16:43 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:16:45 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:16:59 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr wait timed out after 60000 ms
nov. 04 09:16:59 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr wait timed out after 60000 ms
nov. 04 09:16:59 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:16:59 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Send error in SessSetup = -11
nov. 04 09:17:00 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:17:00 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:17:01 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr wait timed out after 60000 ms
nov. 04 09:17:01 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:17:18 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:17:18 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:17:18 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Send error in SessSetup = -11
nov. 04 09:17:21 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:17:21 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:17:24 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Send error in SessSetup = -11
nov. 04 09:17:36 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:17:36 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:17:37 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:17:37 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:17:50 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:17:50 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:17:51 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:17:51 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:18:00 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:18:00 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:18:13 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:18:13 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:19:02 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr wait timed out after 60000 ms
nov. 04 09:19:02 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:19:19 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:19:19 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:19:26 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:19:26 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:19:26 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Send error in SessSetup = -11
nov. 04 09:19:53 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:19:53 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:19:53 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:19:59 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:19:59 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:20:21 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:20:21 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:20:21 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:20:21 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Send error in SessSetup = -11
nov. 04 09:20:43 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:21:43 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr wait timed out after 60000 ms
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: INFO: task kworker/0:0:5 blocked for more than 120 seconds.
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: Not tainted 5.11.0-40-generic #44~20.04.2-Ubuntu
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: INFO: task kworker/0:1:7 blocked for more than 120 seconds.
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: Not tainted 5.11.0-40-generic #44~20.04.2-Ubuntu
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: INFO: task kworker/2:0:27 blocked for more than 120 seconds.
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: Not tainted 5.11.0-40-generic #44~20.04.2-Ubuntu
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: INFO: task kworker/5:0:45 blocked for more than 120 seconds.
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: Not tainted 5.11.0-40-generic #44~20.04.2-Ubuntu
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: INFO: task kworker/2:1:110 blocked for more than 120 seconds.
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: Not tainted 5.11.0-40-generic #44~20.04.2-Ubuntu
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: INFO: task kworker/2:2:120 blocked for more than 120 seconds.
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: Not tainted 5.11.0-40-generic #44~20.04.2-Ubuntu
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: INFO: task kworker/3:1:121 blocked for more than 120 seconds.
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: Not tainted 5.11.0-40-generic #44~20.04.2-Ubuntu
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: INFO: task kworker/4:1:122 blocked for more than 120 seconds.
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: Not tainted 5.11.0-40-generic #44~20.04.2-Ubuntu
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: INFO: task kworker/5:1:123 blocked for more than 120 seconds.
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: Not tainted 5.11.0-40-generic #44~20.04.2-Ubuntu
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: INFO: task kworker/1:1:125 blocked for more than 120 seconds.
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: Not tainted 5.11.0-40-generic #44~20.04.2-Ubuntu
nov. 04 09:23:24 ebvpc-MS-7B98 kernel: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
nov. 04 09:24:27 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 10:04:02 ebvpc-MS-7B98 systemd[13569]: /usr/lib/systemd/system-generators/systemd-fstab-generator failed with exit status 1.
nov. 04 10:04:05 ebvpc-MS-7B98 systemd[13637]: /usr/lib/systemd/system-generators/systemd-fstab-generator failed with exit status 1.
nov. 04 10:04:09 ebvpc-MS-7B98 systemd[14499]: /usr/lib/systemd/system-generators/systemd-fstab-generator failed with exit status 1.
Voilà le résultat de la 2e commande:
grep -E -v '^(#)' /etc/fstab
UUID=941c4955-3cde-427a-9894-fb405b8357a0 / ext4 errors=remount-ro 0 1
UUID=92F0-AA0D /boot/efi vfat umask=0077 0 1
/swapfile none swap sw 0 0
//mafreebox.freebox.fr/Disque\040dur /media/Freebox cifs _netdev,rw,users,credentials=/home/ebv-pc/.smbcredentials,cache=none,iocharset=utf8,uid=1000,file_mode=0777,dir_mode=0777,vers=2.0 0 0
//mafreebox.freebox.fr/Samsung-1Tb /media/Samsung-1Tb cifs _netdev,rw,users,credentials=/home/ebv-pc/.smbcredentials,cache=none,iocharset=utf8,uid=1000,file_mode=0777,dir_mode=0777,vers=2.0 0 0
//mafreebox.freebox.fr/Seagate\040Backup\040Plus\040Drive /media/Seagate cifs _netdev,rw,users,credentials=/home/ebv-pc/.smbcredentials,cache=none,iocharset=utf8,uid=1000,file_mode=0777,dir_mode=0777,vers=2.0 0 0
Pour plus de détails comme dans mon problème ici, j'ai maintenu la version 2.0 de SMB de la freebox, sinon quand je démarre mon pc, il faut que je clique sur les disques pour voir apparaître mes fichiers.
PC: CM MSI Z390-A Pro - Intel Core i5-8400 CPU 2.80gHz x 6 - Intel UHD Graphics 630 (Coffeelake 3x8 GT2) - 2 x DDR4 8Go 2400MHz CL17 Crucial SR - SSD 125.5 Go
Ubuntu 22.10
Débutant....
Hors ligne
#6 Le 04/11/2021, à 14:51
- geole
Re : Freebox: fichier impossible d'accéder au fichier "erreur inconnue 524"
Je ne connais pas ce qu'il faut faire pour définir exactement le montage dans le fichier /etc/fstab
Mais il y a certainement une erreur qui est tracée
nov. 04 09:15:57 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:16:00 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:16:07 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:16:07 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:16:18 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:16:18 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:16:28 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:16:28 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:16:43 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:16:43 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:16:45 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:16:59 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr wait timed out after 60000 ms
nov. 04 09:16:59 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr wait timed out after 60000 ms
nov. 04 09:16:59 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:16:59 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Send error in SessSetup = -11
nov. 04 09:17:00 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:17:00 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:17:01 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr wait timed out after 60000 ms
nov. 04 09:17:01 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:17:18 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:17:18 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:17:18 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Send error in SessSetup = -11
nov. 04 09:17:21 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:17:21 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:17:24 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Send error in SessSetup = -11
nov. 04 09:17:36 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:17:36 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:17:37 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:17:37 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:17:50 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:17:50 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:17:51 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:17:51 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:18:00 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:18:00 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:18:13 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:18:13 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:19:02 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr wait timed out after 60000 ms
nov. 04 09:19:02 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:19:19 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:19:19 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:19:26 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:19:26 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:19:26 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Send error in SessSetup = -11
nov. 04 09:19:53 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:19:53 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:19:53 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:19:59 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:19:59 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:20:21 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:20:21 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Possible client or server bug - zero credits
nov. 04 09:20:21 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:20:21 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr Send error in SessSetup = -11
nov. 04 09:20:43 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr disabling echoes and oplocks
nov. 04 09:21:43 ebvpc-MS-7B98 kernel: CIFS: VFS: \\mafreebox.freebox.fr wait timed out after 60000 ms
De même je ne maîtrise pas la commande mount, Mais on a récupéré les noms de volume
MOUNT.CIFS(8) MOUNT.CIFS(8)
NAME
mount.cifs - mount using the Common Internet File System (CIFS)
SYNOPSIS
mount.cifs {service} {mount-point} [-o options]
This tool is part of the cifs-utils suite.
mount.cifs mounts a CIFS or SMB3 filesystem from Linux. It is usually invoked indirectly by the mount(8) command
when using the "-t cifs" option. This command only works in Linux, and the kernel must support the cifs filesystem.
The SMB3 protocol is the successor to the CIFS (SMB) protocol and is supported by most Windows servers, Azure
(cloud storage), Macs and many other commercial servers and Network Attached Storage appliances as well as by the
popular Open Source server Samba.
The mount.cifs utility attaches the UNC name (exported network resource) specified as service (using //server/share
syntax, where "server" is the server name or IP address and "share" is the name of the share) to the local direc‐
tory mount-point.
Options to mount.cifs are specified as a comma-separated list of key=value pairs. It is possible to send options
other than those listed here, assuming that the cifs filesystem kernel module (cifs.ko) supports them. Unrecognized
cifs mount options passed to the cifs vfs kernel code will be logged to the kernel log.
mount.cifs causes the cifs vfs to launch a thread named cifsd. After mounting it keeps running until the mounted
resource is unmounted (usually via the umount utility).
mount.cifs -V command displays the version of cifs mount helper.
modinfo cifs command displays the version of cifs module.
OPTIONS
username=arg|user=arg
specifies the username to connect as. If this is not given, then the environment variable USER is used.
Earlier versions of mount.cifs also allowed one to specify the username in a user%password or workgroup/user
or workgroup/user%password to allow the password and workgroup to be specified as part of the username. Sup‐
port for those alternate username formats is now deprecated and should no longer be used. Users should use
the discrete password= and domain= to specify those values. While some versions of the cifs kernel module
accept user= as an abbreviation for this option, its use can confuse the standard mount program into think‐
ing that this is a non-superuser mount. It is therefore recommended to use the full username= option name.
password=arg|pass=arg
specifies the CIFS password. If this option is not given then the environment variable PASSWD is used. If
the password is not specified directly or indirectly via an argument to mount, mount.cifs will prompt for a
password, unless the guest option is specified.
Note that a password which contains the delimiter character (i.e. a comma ',') will fail to be parsed cor‐
rectly on the command line. However, the same password defined in the PASSWD environment variable or via a
credentials file (see below) or entered at the password prompt will be read correctly.
credentials=filename|cred=filename
specifies a file that contains a username and/or password and optionally the name of the workgroup. The for‐
mat of the file is:
username=value
password=value
domain=value
This is preferred over having passwords in plaintext in a shared file, such as /etc/fstab . Be sure to pro‐
tect any credentials file properly.
uid=arg
sets the uid that will own all files or directories on the mounted filesystem when the server does not pro‐
vide ownership information. It may be specified as either a username or a numeric uid. When not specified,
the default is uid 0. The mount.cifs helper must be at version 1.10 or higher to support specifying the uid
in non-numeric form. See the section on FILE AND DIRECTORY OWNERSHIP AND PERMISSIONS below for more informa‐
tion.
forceuid
instructs the client to ignore any uid provided by the server for files and directories and to always assign
the owner to be the value of the uid= option. See the section on FILE AND DIRECTORY OWNERSHIP AND PERMIS‐
SIONS below for more information.
cruid=arg
sets the uid of the owner of the credentials cache. This is primarily useful with sec=krb5. The default is
the real uid of the process performing the mount. Setting this parameter directs the upcall to look for a
credentials cache owned by that user.
gid=arg
sets the gid that will own all files or directories on the mounted filesystem when the server does not pro‐
vide ownership information. It may be specified as either a groupname or a numeric gid. When not specified,
the default is gid 0. The mount.cifs helper must be at version 1.10 or higher to support specifying the gid
in non-numeric form. See the section on FILE AND DIRECTORY OWNERSHIP AND PERMISSIONS below for more informa‐
tion.
forcegid
instructs the client to ignore any gid provided by the server for files and directories and to always assign
the owner to be the value of the gid= option. See the section on FILE AND DIRECTORY OWNERSHIP AND PERMIS‐
SIONS below for more information.
idsfromsid
Extract uid/gid from special SID instead of mapping it. See the section on FILE AND DIRECTORY OWNERSHIP AND
PERMISSIONS below for more information.
port=arg
sets the port number on which the client will attempt to contact the CIFS server. If this value is speci‐
fied, look for an existing connection with this port, and use that if one exists. If one doesn't exist, try
to create a new connection on that port. If that connection fails, return an error. If this value isn't
specified, look for an existing connection on port 445 or 139. If no such connection exists, try to connect
on port 445 first and then port 139 if that fails. Return an error if both fail.
netbiosname=arg
When mounting to servers via port 139, specifies the RFC1001 source name to use to represent the client net‐
bios machine during the netbios session initialization.
servern=arg
Similar to netbiosname except it specifies the netbios name of the server instead of the client. Although
rarely needed for mounting to newer servers, this option is needed for mounting to some older servers (such
as OS/2 or Windows 98 and Windows ME) since when connecting over port 139 they, unlike most newer servers,
do not support a default server name. A server name can be up to 15 characters long and is usually upper‐
cased.
file_mode=arg
If the server does not support the CIFS Unix extensions this overrides the default file mode.
dir_mode=arg
If the server does not support the CIFS Unix extensions this overrides the default mode for directories.
ip=arg|addr=arg
sets the destination IP address. This option is set automatically if the server name portion of the re‐
quested UNC name can be resolved so rarely needs to be specified by the user.
domain=arg|dom=arg|workgroup=arg
Sets the domain (workgroup) of the user. If no domains are given, the empty domain will be used. Use domain‐
auto to automatically guess the domain of the server you are connecting to.
domainauto
When using NTLM authentication and not providing a domain via domain, guess the domain from the server NTLM
challenge. This behavior used to be the default on kernels older than 2.6.36.
guest don't prompt for a password.
iocharset
Charset used to convert local path names to and from Unicode. Unicode is used by default for network path
names if the server supports it. If iocharset is not specified then the nls_default specified during the lo‐
cal client kernel build will be used. If server does not support Unicode, this parameter is unused.
ro mount read-only.
rw mount read-write.
setuids
If the CIFS Unix extensions are negotiated with the server the client will attempt to set the effective uid
and gid of the local process on newly created files, directories, and devices (create, mkdir, mknod). If the
CIFS Unix Extensions are not negotiated, for newly created files and directories instead of using the de‐
fault uid and gid specified on the the mount, cache the new file's uid and gid locally which means that the
uid for the file can change when the inode is reloaded (or the user remounts the share).
nosetuids
The client will not attempt to set the uid and gid on on newly created files, directories, and devices (cre‐
ate, mkdir, mknod) which will result in the server setting the uid and gid to the default (usually the
server uid of the user who mounted the share). Letting the server (rather than the client) set the uid and
gid is the default. If the CIFS Unix Extensions are not negotiated then the uid and gid for new files will
appear to be the uid (gid) of the mounter or the uid (gid) parameter specified on the mount.
perm Client does permission checks (vfs_permission check of uid and gid of the file against the mode and desired
operation), Note that this is in addition to the normal ACL check on the target machine done by the server
software. Client permission checking is enabled by default.
noperm Client does not do permission checks. This can expose files on this mount to access by other users on the
local client system. It is typically only needed when the server supports the CIFS Unix Extensions but the
UIDs/GIDs on the client and server system do not match closely enough to allow access by the user doing the
mount. Note that this does not affect the normal ACL check on the target machine done by the server software
(of the server ACL against the user name provided at mount time).
dynperm
Instructs the server to maintain ownership and permissions in memory that can't be stored on the server.
This information can disappear at any time (whenever the inode is flushed from the cache), so while this may
help make some applications work, it's behavior is somewhat unreliable. See the section below on FILE AND
DIRECTORY OWNERSHIP AND PERMISSIONS for more information.
cache=arg
Cache mode. See the section below on CACHE COHERENCY for details. Allowed values are:
• none - do not cache file data at all
• strict - follow the CIFS/SMB2 protocol strictly
• loose - allow loose caching semantics
The default in kernels prior to 3.7 was loose. As of kernel 3.7 the default is strict.
nostrictsync
Do not ask the server to flush on fsync(). Some servers perform non-buffered writes by default in which
case flushing is redundant. In workloads where a client is performing a lot of small write + fsync combina‐
tions and where network latency is much higher than the server latency, this brings a 2x performance im‐
provement. This option is also a good candidate in scenarios where we want performance over consistency.
handlecache
(default) In SMB2 and above, the client often has to open the root of the share (empty path) in various
places during mount, path revalidation and the statfs(2) system call. This option cuts redundant round trip
traffic (opens and closes) by simply keeping the directory handle for the root around once opened.
nohandlecache
Disable caching of the share root directory handle.
handletimeout=arg
The time (in milliseconds) for which the server should reserve the handle after a failover waiting for the
client to reconnect. When mounting with resilienthandles or persistenthandles mount option, or when their
use is requested by the server (continuous availability shares) then this parameter overrides the server de‐
fault handle timeout (which for most servers is 120 seconds).
rwpidforward
Forward pid of a process who opened a file to any read or write operation on that file. This prevent appli‐
cations like wine(1) from failing on read and write if we use mandatory brlock style.
mapchars
Translate six of the seven reserved characters (not backslash, but including the colon, question mark, pipe,
asterik, greater than and less than characters) to the remap range (above 0xF000), which also allows the
CIFS client to recognize files created with such characters by Windows's Services for Mac. This can also be
useful when mounting to most versions of Samba (which also forbids creating and opening files whose names
contain any of these seven characters). This has no effect if the server does not support Unicode on the
wire. Please note that the files created with mapchars mount option may not be accessible if the share is
mounted without that option.
nomapchars
(default) Do not translate any of these seven characters.
mapposix
Translate reserved characters similarly to mapchars but use the mapping from Microsoft "Services For Unix".
intr currently unimplemented.
nointr (default) currently unimplemented.
hard The program accessing a file on the cifs mounted file system will hang when the server crashes.
soft (default) The program accessing a file on the cifs mounted file system will not hang when the server crashes
and will return errors to the user application.
noacl Do not allow POSIX ACL operations even if server would support them.
The CIFS client can get and set POSIX ACLs (getfacl, setfacl) to Samba servers version 3.0.10 and later.
Setting POSIX ACLs requires enabling both CIFS_XATTR and then CIFS_POSIX support in the CIFS configuration
options when building the cifs module. POSIX ACL support can be disabled on a per mount basis by specifying
noacl on mount.
cifsacl
This option is used to map CIFS/NTFS ACLs to/from Linux permission bits, map SIDs to/from UIDs and GIDs, and
get and set Security Descriptors.
See section on CIFS/NTFS ACL, SID/UID/GID MAPPING, SECURITY DESCRIPTORS for more information.
backupuid=arg
File access by this user shall be done with the backup intent flag set. Either a name or an id must be pro‐
vided as an argument, there are no default values.
See section ACCESSING FILES WITH BACKUP INTENT for more details.
backupgid=arg
File access by users who are members of this group shall be done with the backup intent flag set. Either a
name or an id must be provided as an argument, there are no default values.
See section ACCESSING FILES WITH BACKUP INTENT for more details.
nocase Request case insensitive path name matching (case sensitive is the default if the server supports it).
ignorecase
Synonym for nocase.
sec=arg
Security mode. Allowed values are:
• none - attempt to connection as a null user (no name)
• krb5 - Use Kerberos version 5 authentication
• krb5i - Use Kerberos authentication and forcibly enable packet signing
• ntlm - Use NTLM password hashing
• ntlmi - Use NTLM password hashing and force packet signing
• ntlmv2 - Use NTLMv2 password hashing
• ntlmv2i - Use NTLMv2 password hashing and force packet signing
• ntlmssp - Use NTLMv2 password hashing encapsulated in Raw NTLMSSP message
• ntlmsspi - Use NTLMv2 password hashing encapsulated in Raw NTLMSSP message, and force packet signing
The default in mainline kernel versions prior to v3.8 was sec=ntlm. In v3.8, the default was changed to
sec=ntlmssp.
If the server requires signing during protocol negotiation, then it may be enabled automatically. Packet
signing may also be enabled automatically if it's enabled in /proc/fs/cifs/SecurityFlags.
seal Request encryption at the SMB layer. The encryption algorithm used is AES-128-CCM. Requires SMB3 or above
(see vers).
rdma Connect directly to the server using SMB Direct via a RDMA adapter. Requires SMB3 or above (see vers).
resilienthandles
Enable resilient handles. If the server supports it, keep opened files across reconnections. Requires SMB2.1
(see vers).
noresilienthandles
(default) Disable resilient handles.
persistenthandles
Enable persistent handles. If the server supports it, keep opened files across reconnections. Persistent
handles are also valid across servers in a cluster and have stronger guarantees than resilient handles. Re‐
quires SMB3 or above (see vers).
nopersistenthandles
(default) Disable persistent handles.
snapshot=time
Mount a specific snapshot of the remote share. time must be a positive integer identifying the snapshot re‐
quested (in 100-nanosecond units that have elapsed since January 1, 1601, or alternatively it can be speci‐
fied in GMT format e.g. @GMT-2019.03.27-20.52.19). Supported in the Linux kernel starting from v4.19.
nobrl Do not send byte range lock requests to the server. This is necessary for certain applications that break
with cifs style mandatory byte range locks (and most cifs servers do not yet support requesting advisory
byte range locks).
forcemandatorylock
Do not use POSIX locks even when available via unix extensions. Always use cifs style mandatory locks.
locallease
Check cached leases locally instead of querying the server.
sfu When the CIFS or SMB3 Unix Extensions are not negotiated, attempt to create device files and fifos in a for‐
mat compatible with Services for Unix (SFU). In addition retrieve bits 10-12 of the mode via the SETFILEBITS
extended attribute (as SFU does). In the future the bottom 9 bits of the mode mode also will be emulated us‐
ing queries of the security descriptor (ACL). [NB: requires version 1.39 or later of the CIFS VFS. To recog‐
nize symlinks and be able to create symlinks in an SFU interoperable form requires version 1.40 or later of
the CIFS VFS kernel module.
mfsymlinks
Enable support for Minshall+French symlinks (see
http://wiki.samba.org/index.php/UNIX_Extensions#Minshall.2BFrench_symlinks). This option is ignored when
specified together with the sfu option. Minshall+French symlinks are used even if the server supports the
CIFS Unix Extensions.
echo_interval=n
sets the interval at which echo requests are sent to the server on an idling connection. This setting also
affects the time required for a connection to an unresponsive server to timeout. Here n is the echo interval
in seconds. The reconnection happens at twice the value of the echo_interval set for an unresponsive server.
If this option is not given then the default value of 60 seconds is used. The minimum tunable value is 1
second and maximum can go up to 600 seconds.
serverino
Use inode numbers (unique persistent file identifiers) returned by the server instead of automatically gen‐
erating temporary inode numbers on the client. Although server inode numbers make it easier to spot
hardlinked files (as they will have the same inode numbers) and inode numbers may be persistent (which is
useful for some software), the server does not guarantee that the inode numbers are unique if multiple
server side mounts are exported under a single share (since inode numbers on the servers might not be unique
if multiple filesystems are mounted under the same shared higher level directory). Note that not all servers
support returning server inode numbers, although those that support the CIFS Unix Extensions, and Windows
2000 and later servers typically do support this (although not necessarily on every local server filesys‐
tem). Parameter has no effect if the server lacks support for returning inode numbers or equivalent. This
behavior is enabled by default.
noserverino
Client generates inode numbers itself rather than using the actual ones from the server.
See section INODE NUMBERS for more information.
posix|unix|linux
(default) Enable Unix Extensions for this mount. Requires CIFS (vers=1.0) or SMB3.1.1 (vers=3.1.1) and a
server supporting them.
noposix|nounix|nolinux
Disable the Unix Extensions for this mount. This can be useful in order to turn off multiple settings at
once. This includes POSIX acls, POSIX locks, POSIX paths, symlink support and retrieving uids/gids/mode from
the server. This can also be useful to work around a bug in a server that supports Unix Extensions.
See section INODE NUMBERS for more information.
nouser_xattr
Do not allow getfattr/setfattr to get/set xattrs, even if server would support it otherwise. The default is
for xattr support to be enabled.
nodfs Do not follow Distributed FileSystem referrals. IO on a file not stored on the server will fail instead of
connecting to the target server transparently.
noautotune
Use fixed size for kernel recv/send socket buffers.
nosharesock
Do not try to reuse sockets if the system is already connected to the server via an existing mount point.
This will make the client always make a new connection to the server no matter what he is already connected
to. This can be useful in simulating multiple clients connecting to the same server, as each mount point
will use a different TCP socket.
noblocksend
Send data on the socket using non blocking operations (MSG_DONTWAIT flag).
rsize=bytes
Maximum amount of data that the kernel will request in a read request in bytes. Maximum size that servers
will accept is typically 8MB for SMB3 or later dialects. Default requested during mount is 4MB. Prior to the
4.20 kernel the default requested was 1MB. Prior to the SMB2.1 dialect the maximum was usually 64K.
wsize=bytes
Maximum amount of data that the kernel will send in a write request in bytes. Maximum size that servers will
accept is typically 8MB for SMB3 or later dialects. Default requested during mount is 4MB. Prior to the 4.20
kernel the default requested was 1MB. Prior to the SMB2.1 dialect the maximum was usually 64K.
bsize=bytes
Override the default blocksize (1MB) reported on SMB3 files (requires kernel version of 5.1 or later). Prior
to kernel version 5.1, the blocksize was always reported as 16K instead of 1MB (and was not configurable)
which can hurt the performance of tools like cp and scp (especially for uncached I/O) which decide on the
read and write size to use for file copies based on the inode blocksize. bsize may not be less than 16K or
greater than 16M.
max_credits=n
Maximum credits the SMB2 client can have. Default is 32000. Must be set to a number between 20 and 60000.
fsc Enable local disk caching using FS-Cache for CIFS. This option could be useful to improve performance on a
slow link, heavily loaded server and/or network where reading from the disk is faster than reading from the
server (over the network). This could also impact the scalability positively as the number of calls to the
server are reduced. But, be warned that local caching is not suitable for all workloads, for e.g., read-once
type workloads. So, you need to consider carefully the situation/workload before using this option. Cur‐
rently, local disk caching is enabled for CIFS files opened as read-only.
NOTE: This feature is available only in the recent kernels that have been built with the kernel config op‐
tion CONFIG_CIFS_FSCACHE. You also need to have cachefilesd daemon installed and running to make the cache
operational.
multiuser
Map user accesses to individual credentials when accessing the server. By default, CIFS mounts only use a
single set of user credentials (the mount credentials) when accessing a share. With this option, the client
instead creates a new session with the server using the user's credentials whenever a new user accesses the
mount. Further accesses by that user will also use those credentials. Because the kernel cannot prompt for
passwords, multiuser mounts are limited to mounts using sec= options that don't require passwords.
With this change, it's feasible for the server to handle permissions enforcement, so this option also im‐
plies noperm . Furthermore, when unix extensions aren't in use and the administrator has not overridden own‐
ership using the uid= or gid= options, ownership of files is presented as the current user accessing the
share.
actimeo=arg
The time (in seconds) that the CIFS client caches attributes of a file or directory before it requests at‐
tribute information from a server. During this period the changes that occur on the server remain undetected
until the client checks the server again.
By default, the attribute cache timeout is set to 1 second. This means more frequent on-the-wire calls to
the server to check whether attributes have changed which could impact performance. With this option users
can make a tradeoff between performance and cache metadata correctness, depending on workload needs. Shorter
timeouts mean better cache coherency, but frequent increased number of calls to the server. Longer timeouts
mean a reduced number of calls to the server but looser cache coherency. The actimeo value is a positive in‐
teger that can hold values between 0 and a maximum value of 2^30 * HZ (frequency of timer interrupt) set‐
ting.
noposixpaths
If unix extensions are enabled on a share, then the client will typically allow filenames to include any
character besides '/' in a pathname component, and will use forward slashes as a pathname delimiter. This
option prevents the client from attempting to negotiate the use of posix-style pathnames to the server.
posixpaths
Inverse of noposixpaths .
prefixpath=arg
It's possible to mount a subdirectory of a share. The preferred way to do this is to append the path to the
UNC when mounting. However, it's also possible to do the same by setting this option and providing the path
there.
vers=arg
SMB protocol version. Allowed values are:
• 1.0 - The classic CIFS/SMBv1 protocol.
• 2.0 - The SMBv2.002 protocol. This was initially introduced in Windows Vista Service Pack 1, and Windows
Server 2008. Note that the initial release version of Windows Vista spoke a slightly different dialect
(2.000) that is not supported.
• 2.1 - The SMBv2.1 protocol that was introduced in Microsoft Windows 7 and Windows Server 2008R2.
• 3.0 - The SMBv3.0 protocol that was introduced in Microsoft Windows 8 and Windows Server 2012.
• 3.02 or 3.0.2 - The SMBv3.0.2 protocol that was introduced in Microsoft Windows 8.1 and Windows Server
2012R2.
• 3.1.1 or 3.11 - The SMBv3.1.1 protocol that was introduced in Microsoft Windows 10 and Windows Server
2016.
• 3 - The SMBv3.0 protocol version and above.
• default - Tries to negotiate the highest SMB2+ version supported by both the client and server.
If no dialect is specified on mount vers=default is used. To check Dialect refer to /proc/fs/cifs/DebugData
Note too that while this option governs the protocol version used, not all features of each version are
available.
The default since v4.13.5 is for the client and server to negotiate the highest possible version greater
than or equal to 2.1. In kernels prior to v4.13, the default was 1.0. For kernels between v4.13 and v4.13.5
the default is 3.0.
--verbose
Print additional debugging information for the mount. Note that this parameter must be specified before the
-o . For example:
mount -t cifs //server/share /mnt --verbose -o user=username
SERVICE FORMATTING AND DELIMITERS
It's generally preferred to use forward slashes (/) as a delimiter in service names. They are considered to be the
"universal delimiter" since they are generally not allowed to be embedded within path components on Windows ma‐
chines and the client can convert them to backslashes (\) unconditionally. Conversely, backslash characters are al‐
lowed by POSIX to be part of a path component, and can't be automatically converted in the same way.
mount.cifs will attempt to convert backslashes to forward slashes where it's able to do so, but it cannot do so in
any path component following the sharename.
INODE NUMBERS
When Unix Extensions are enabled, we use the actual inode number provided by the server in response to the POSIX
calls as an inode number.
When Unix Extensions are disabled and serverino mount option is enabled there is no way to get the server inode
number. The client typically maps the server-assigned UniqueID onto an inode number.
Note that the UniqueID is a different value from the server inode number. The UniqueID value is unique over the
scope of the entire server and is often greater than 2 power 32. This value often makes programs that are not com‐
piled with LFS (Large File Support), to trigger a glibc EOVERFLOW error as this won't fit in the target structure
field. It is strongly recommended to compile your programs with LFS support (i.e. with -D_FILE_OFFSET_BITS=64) to
prevent this problem. You can also use noserverino mount option to generate inode numbers smaller than 2 power 32
on the client. But you may not be able to detect hardlinks properly.
CACHE COHERENCY
With a network filesystem such as CIFS or NFS, the client must contend with the fact that activity on other clients
or the server could change the contents or attributes of a file without the client being aware of it. One way to
deal with such a problem is to mandate that all file accesses go to the server directly. This is performance pro‐
hibitive however, so most protocols have some mechanism to allow the client to cache data locally.
The CIFS protocol mandates (in effect) that the client should not cache file data unless it holds an opportunistic
lock (aka oplock) or a lease. Both of these entities allow the client to guarantee certain types of exclusive ac‐
cess to a file so that it can access its contents without needing to continually interact with the server. The
server will call back the client when it needs to revoke either of them and allow the client a certain amount of
time to flush any cached data.
The cifs client uses the kernel's pagecache to cache file data. Any I/O that's done through the pagecache is gener‐
ally page-aligned. This can be problematic when combined with byte-range locks as Windows' locking is mandatory and
can block reads and writes from occurring.
cache=none means that the client never utilizes the cache for normal reads and writes. It always accesses the
server directly to satisfy a read or write request.
cache=strict means that the client will attempt to follow the CIFS/SMB2 protocol strictly. That is, the cache is
only trusted when the client holds an oplock. When the client does not hold an oplock, then the client bypasses the
cache and accesses the server directly to satisfy a read or write request. By doing this, the client avoids prob‐
lems with byte range locks. Additionally, byte range locks are cached on the client when it holds an oplock and are
"pushed" to the server when that oplock is recalled.
cache=loose allows the client to use looser protocol semantics which can sometimes provide better performance at
the expense of cache coherency. File access always involves the pagecache. When an oplock or lease is not held,
then the client will attempt to flush the cache soon after a write to a file. Note that that flush does not neces‐
sarily occur before a write system call returns.
In the case of a read without holding an oplock, the client will attempt to periodically check the attributes of
the file in order to ascertain whether it has changed and the cache might no longer be valid. This mechanism is
much like the one that NFSv2/3 use for cache coherency, but it particularly problematic with CIFS. Windows is quite
"lazy" with respect to updating the LastWriteTime field that the client uses to verify this. The effect is that
cache=loose can cause data corruption when multiple readers and writers are working on the same files.
Because of this, when multiple clients are accessing the same set of files, then cache=strict is recommended. That
helps eliminate problems with cache coherency by following the CIFS/SMB2 protocols more strictly.
Note too that no matter what caching model is used, the client will always use the pagecache to handle mmap'ed
files. Writes to mmap'ed files are only guaranteed to be flushed to the server when msync() is called, or on
close().
The default in kernels prior to 3.7 was loose. As of 3.7, the default is strict.
CIFS/NTFS ACL, SID/UID/GID MAPPING, SECURITY DESCRIPTORS
This option is used to work with file objects which posses Security Descriptors and CIFS/NTFS ACL instead of UID,
GID, file permission bits, and POSIX ACL as user authentication model. This is the most common authentication model
for CIFS servers and is the one used by Windows.
Support for this requires both CIFS_XATTR and CIFS_ACL support in the CIFS configuration options when building the
cifs module.
A CIFS/NTFS ACL is mapped to file permission bits using an algorithm specified in the following Microsoft TechNet
document:
http://technet.microsoft.com/en-us/library/bb463216.aspx
In order to map SIDs to/from UIDs and GIDs, the following is required:
• a kernel upcall to the cifs.idmap utility set up via request-key.conf(5)
• winbind support configured via nsswitch.conf(5) and smb.conf(5)
Please refer to the respective manpages of cifs.idmap(8) and winbindd(8) for more information.
Security descriptors for a file object can be retrieved and set directly using extended attribute named sys‐
tem.cifs_acl. The security descriptors presented via this interface are "raw" blobs of data and need a userspace
utility to either parse and format or to assemble it such as getcifsacl(1) and setcifsacl(1) respectively.
Some of the things to consider while using this mount option:
• There may be an increased latency when handling metadata due to additional requests to get and set security de‐
scriptors.
• The mapping between a CIFS/NTFS ACL and POSIX file permission bits is imperfect and some ACL information may be
lost in the translation.
• If either upcall to cifs.idmap is not setup correctly or winbind is not configured and running, ID mapping will
fail. In that case uid and gid will default to either to those values of the share or to the values of uid and/or
gid mount options if specified.
ACCESSING FILES WITH BACKUP INTENT
For an user on the server, desired access to a file is determined by the permissions and rights associated with
that file. This is typically accomplished using ownership and ACL. For a user who does not have access rights to a
file, it is still possible to access that file for a specific or a targeted purpose by granting special rights.
One of the specific purposes is to access a file with the intent to either backup or restore i.e. backup intent.
The right to access a file with the backup intent can typically be granted by making that user a part of the
built-in group Backup Operators. Thus, when this user attempts to open a file with the backup intent, open request
is sent by setting the bit FILE_OPEN_FOR_BACKUP_INTENT as one of the CreateOptions.
As an example, on a Windows server, a user named testuser, cannot open this file with such a security descriptor:
REVISION:0x1
CONTROL:0x9404
OWNER:Administrator
GROUP:Domain Users
ACL:Administrator:ALLOWED/0x0/FULL
But the user testuser, if it becomes part of the Backup Operators group, can open the file with the backup intent.
Any user on the client side who can authenticate as such a user on the server, can access the files with the backup
intent. But it is desirable and preferable for security reasons amongst many, to restrict this special right.
The mount option backupuid is used to restrict this special right to a user which is specified by either a name or
an id. The mount option backupgid is used to restrict this special right to the users in a group which is specified
by either a name or an id. Only users matching either backupuid or backupgid shall attempt to access files with
backup intent. These two mount options can be used together.
FILE AND DIRECTORY OWNERSHIP AND PERMISSIONS
The core CIFS protocol does not provide unix ownership information or mode for files and directories. Because of
this, files and directories will generally appear to be owned by whatever values the uid= or gid= options are set,
and will have permissions set to the default file_mode and dir_mode for the mount. Attempting to change these val‐
ues via chmod/chown will return success but have no effect.
When the client and server negotiate unix extensions, files and directories will be assigned the uid, gid, and mode
provided by the server. Because CIFS mounts are generally single-user, and the same credentials are used no matter
what user accesses the mount, newly created files and directories will generally be given ownership corresponding
to whatever credentials were used to mount the share.
If the uid's and gid's being used do not match on the client and server, the forceuid and forcegid options may be
helpful. Note however, that there is no corresponding option to override the mode. Permissions assigned to a file
when forceuid or forcegid are in effect may not reflect the the real permissions.
When unix extensions are not negotiated, it's also possible to emulate them locally on the server using the dynperm
mount option. When this mount option is in effect, newly created files and directories will receive what appear to
be proper permissions. These permissions are not stored on the server however and can disappear at any time in the
future (subject to the whims of the kernel flushing out the inode cache). In general, this mount option is discour‐
aged.
It's also possible to override permission checking on the client altogether via the noperm option. Server-side per‐
mission checks cannot be overridden. The permission checks done by the server will always correspond to the creden‐
tials used to mount the share, and not necessarily to the user who is accessing the share.
ENVIRONMENT VARIABLES
The variable USER may contain the username of the person to be used to authenticate to the server. The variable can
be used to set both username and password by using the format username%password.
The variable PASSWD may contain the password of the person using the client.
The variable PASSWD_FILE may contain the pathname of a file to read the password from. A single line of input is
read and used as the password.
NOTES
This command may be used only by root, unless installed setuid, in which case the noexec and nosuid mount flags are
enabled. When installed as a setuid program, the program follows the conventions set forth by the mount program for
user mounts, with the added restriction that users must be able to chdir() into the mountpoint prior to the mount
in order to be able to mount onto it.
Some samba client tools like smbclient(8) honour client-side configuration parameters present in smb.conf. Unlike
those client tools, mount.cifs ignores smb.conf completely.
CONFIGURATION
The primary mechanism for making configuration changes and for reading debug information for the cifs vfs is via
the Linux /proc filesystem. In the directory /proc/fs/cifs are various configuration files and pseudo files which
can display debug information and performance statistics. There are additional startup options such as maximum buf‐
fer size and number of buffers which only may be set when the kernel cifs vfs (cifs.ko module) is loaded. These can
be seen by running the modinfo utility against the file cifs.ko which will list the options that may be passed to
cifs during module installation (device driver load). For more information see the kernel file fs/cifs/README. When
configuring dynamic tracing (trace-cmd) note that the list of SMB3 events which can be enabled can be seen at:
/sys/kernel/debug/tracing/events/cifs/.
SECURITY
The use of SMB2.1 or later (including the latest dialect SMB3.1.1) is recommended for improved security and SMB1 is
no longer requested by default at mount time. Old dialects such as CIFS (SMB1, ie vers=1.0) have much weaker secu‐
rity. Use of CIFS (SMB1) can be disabled by modprobe cifs disable_legacy_dialects=y.
BUGS
Mounting using the CIFS URL specification is currently not supported.
The credentials file does not handle usernames or passwords with leading space.
Note that the typical response to a bug report is a suggestion to try the latest version first. So please try doing
that first, and always include which versions you use of relevant software when reporting bugs (minimum: mount.cifs
(try mount.cifs -V), kernel (see /proc/version) and server type you are trying to contact.
VERSION
This man page is correct for version 2.18 of the cifs vfs filesystem (roughly Linux kernel 5.0).
SEE ALSO
cifs.upcall(8), getcifsacl(1), setcifsacl(1)
Documentation/filesystems/cifs.txt and fs/cifs/README in the Linux kernel source tree may contain additional op‐
tions and information.
AUTHOR
Steve French
The maintainer of the Linux cifs vfs is Steve French. The maintainer of the cifs-utils suite of user space tools is
Pavel Shilovsky. The Linux CIFS Mailing list is the preferred place to ask questions regarding these programs.
MOUNT.CIFS(8)
Dernière modification par geole (Le 04/11/2021, à 14:56)
Les grilles de l'installateur https://doc.ubuntu-fr.org/tutoriel/inst … _subiquity
"gedit admin:///etc/fstab" est proscrit, utilisez "pkexec env DISPLAY=$DISPLAY XAUTHORITY=$XAUTHORITY xdg-open /etc/fstab" Voir https://doc.ubuntu-fr.org/gedit
Les partitions EXT4 des disques externes => https://forum.ubuntu-fr.org/viewtopic.p … #p22697248
En ligne
#7 Le 04/11/2021, à 17:10
- pettan14
Re : Freebox: fichier impossible d'accéder au fichier "erreur inconnue 524"
N'étant pas très doué, je suis désolé géole ça ne m'avance pas beaucoup plus...
PC: CM MSI Z390-A Pro - Intel Core i5-8400 CPU 2.80gHz x 6 - Intel UHD Graphics 630 (Coffeelake 3x8 GT2) - 2 x DDR4 8Go 2400MHz CL17 Crucial SR - SSD 125.5 Go
Ubuntu 22.10
Débutant....
Hors ligne